Conductance (graph)
In graph theory the conductance of a graph G = (V, E) measures how "well-knit" the graph is: it controls how fast a random walk on G converges to its stationary distribution. The conductance of a graph is often called the Cheeger constant of a graph as the analog of its counterpart in spectral geometry. Since electrical networks are intimately related to random walks with a long history in the usage of the term "conductance", this alternative name helps avoid possible confusion.
Part of a series on | ||||
Network science | ||||
---|---|---|---|---|
Network types | ||||
Graphs | ||||
|
||||
Models | ||||
|
||||
| ||||
|
||||
The conductance of a cut in a graph is defined as:
- ,
where the aij are the entries of the adjacency matrix for G, so that
is the total number (or weight) of the edges incident with S. a(S) is also called a volume of the set .
The conductance of the whole graph is the minimum conductance over all the possible cuts:
Equivalently, conductance of a graph is defined as follows:
For a d-regular graph, the conductance is equal to the isoperimetric number divided by d.