Compound of five cubes
The compound of five cubes is one of the five regular polyhedral compounds. It was first described by Edmund Hess in 1876.
Compound of five cubes | |
---|---|
(Animation, 3D model) | |
Type | Regular compound |
Coxeter symbol | 2{5,3}[5{4,3}] |
Stellation core | rhombic triacontahedron |
Convex hull | Dodecahedron |
Index | UC9 |
Polyhedra | 5 cubes |
Faces | 30 squares (visible as 360 triangles) |
Edges | 60 |
Vertices | 20 |
Dual | Compound of five octahedra |
Symmetry group | icosahedral (Ih) |
Subgroup restricting to one constituent | pyritohedral (Th) |
It is one of five regular compounds, and dual to the compound of five octahedra. It can be seen as a faceting of a regular dodecahedron.
It is one of the stellations of the rhombic triacontahedron. It has icosahedral symmetry (Ih).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.