Complete set of invariants

In mathematics, a complete set of invariants for a classification problem is a collection of maps

(where is the collection of objects being classified, up to some equivalence relation , and the are some sets), such that if and only if for all . In words, such that two objects are equivalent if and only if all invariants are equal.

Symbolically, a complete set of invariants is a collection of maps such that

is injective.

As invariants are, by definition, equal on equivalent objects, equality of invariants is a necessary condition for equivalence; a complete set of invariants is a set such that equality of these is also sufficient for equivalence. In the context of a group action, this may be stated as: invariants are functions of coinvariants (equivalence classes, orbits), and a complete set of invariants characterizes the coinvariants (is a set of defining equations for the coinvariants).

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.