Clustered standard errors

Clustered standard errors (or Liang-Zeger standard errors) are measurements that estimate the standard error of a regression parameter in settings where observations may be subdivided into smaller-sized groups ("clusters") and where the sampling and/or treatment assignment is correlated within each group. Clustered standard errors are widely used in a variety of applied econometric settings, including difference-in-differences or experiments.

Analogous to how Huber-White standard errors are consistent in the presence of heteroscedasticity and Newey–West standard errors are consistent in the presence of accurately-modeled autocorrelation, clustered standard errors are consistent in the presence of cluster-based sampling or treatment assignment. Clustered standard errors are often justified by possible correlation in modeling residuals within each cluster; while recent work suggests that this is not the precise justification behind clustering, it may be pedagogically useful.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.