Change detection

In statistical analysis, change detection or change point detection tries to identify times when the probability distribution of a stochastic process or time series changes. In general the problem concerns both detecting whether or not a change has occurred, or whether several changes might have occurred, and identifying the times of any such changes.

Specific applications, like step detection and edge detection, may be concerned with changes in the mean, variance, correlation, or spectral density of the process. More generally change detection also includes the detection of anomalous behavior: anomaly detection.

Offline change point detection it is assumed that a sequence of length is available and the goal is to identify whether any change point(s) occurred in the series. This is an example of post hoc analysis and is often approached using hypothesis testing methods. By contrast, online change point detection is concerned with detecting change points in an incoming data stream.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.