Canonical commutation relation

In quantum mechanics, the canonical commutation relation is the fundamental relation between canonical conjugate quantities (quantities which are related by definition such that one is the Fourier transform of another). For example,

between the position operator x and momentum operator px in the x direction of a point particle in one dimension, where [x , px] = x pxpx x is the commutator of x and px, i is the imaginary unit, and is the reduced Planck's constant h/2π, and is the unit operator. In general, position and momentum are vectors of operators and their commutation relation between different components of position and momentum can be expressed as

where is the Kronecker delta.

This relation is attributed to Werner Heisenberg, Max Born and Pascual Jordan (1925), who called it a "quantum condition" serving as a postulate of the theory; it was noted by E. Kennard (1927) to imply the Heisenberg uncertainty principle. The Stone–von Neumann theorem gives a uniqueness result for operators satisfying (an exponentiated form of) the canonical commutation relation.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.