Bundle (mathematics)

In mathematics, a bundle is a generalization of a fiber bundle dropping the condition of a local product structure. The requirement of a local product structure rests on the bundle having a topology. Without this requirement, more general objects can be considered bundles. For example, one can consider a bundle π: EB with E and B sets. It is no longer true that the preimages must all look alike, unlike fiber bundles where the fibers must all be isomorphic (in the case of vector bundles) and homeomorphic.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.