Boltzmann–Matano analysis

The Boltzmann–Matano method is used to convert the partial differential equation resulting from Fick's law of diffusion into a more easily solved ordinary differential equation, which can then be applied to calculate the diffusion coefficient as a function of concentration.

Ludwig Boltzmann worked on Fick's second law to convert it into an ordinary differential equation, whereas Chujiro Matano performed experiments with diffusion couples and calculated the diffusion coefficients as a function of concentration in metal alloys. Specifically, Matano proved that the diffusion rate of A atoms into a B-atom crystal lattice is a function of the amount of A atoms already in the B lattice.

The importance of the classic Boltzmann–Matano method consists in the ability to extract diffusivities from concentration–distance data. These methods, also known as inverse methods, have both proven to be reliable, convenient and accurate with the assistance of modern computational techniques.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.