Bohr–Mollerup theorem
In mathematical analysis, the Bohr–Mollerup theorem is a theorem proved by the Danish mathematicians Harald Bohr and Johannes Mollerup. The theorem characterizes the gamma function, defined for x > 0 by
as the only positive function f , with domain on the interval x > 0, that simultaneously has the following three properties:
- f (1) = 1, and
- f (x + 1) = x f (x) for x > 0 and
- f is logarithmically convex.
A treatment of this theorem is in Artin's book The Gamma Function, which has been reprinted by the AMS in a collection of Artin's writings.
The theorem was first published in a textbook on complex analysis, as Bohr and Mollerup thought it had already been proved.
The theorem admits a far-reaching generalization to a wide variety of functions (that have convexity or concavity properties of any order).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.