Bochner's theorem
In mathematics, Bochner's theorem (named for Salomon Bochner) characterizes the Fourier transform of a positive finite Borel measure on the real line. More generally in harmonic analysis, Bochner's theorem asserts that under Fourier transform a continuous positive-definite function on a locally compact abelian group corresponds to a finite positive measure on the Pontryagin dual group. The case of sequences was first established by Gustav Herglotz (see also the related Herglotz representation theorem.)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.