Biological neuron model

Biological neuron models, also known as spiking neuron models, are mathematical descriptions of neurons. In particular, these models describe how the voltage potential across the cell membrane changes over time. In an experimental setting, stimulating neurons with an electrical current generates an action potential (or spike), that propagates down the neuron's axon. This axon can branch out and connect to a large number of downstream neurons at sites called synapses. At these synapses, the spike can cause release of a biochemical substance (neurotransmitter), which in turn can change the voltage potential of downstream neurons, potentially leading to spikes in those downstream neurons, thus propagating the signal. As many as 85% of neurons in the neocortex, the outermost layer of the mammalian brain, consist of excitatory pyramidal neurons, and each pyramidal neuron receives tens of thousands of inputs from other neurons. Thus, spiking neurons are a major information processing unit of the nervous system.

One such example of a spiking neuron model may be a highly detailed mathematical model that includes spatial morphology. Another may be a conductance-based neuron model that views neurons as points and describes the membrane voltage dynamics as a function of transmembrane currents. A mathematically simpler "integrate-and-fire" model significantly simplifies the description of ion channel and membrane potential dynamics (initially studied by Lapique in 1907).

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.