Binary entropy function
In information theory, the binary entropy function, denoted or , is defined as the entropy of a Bernoulli process with probability of one of two values. It is a special case of , the entropy function. Mathematically, the Bernoulli trial is modelled as a random variable that can take on only two values: 0 and 1, which are mutually exclusive and exhaustive.
If , then and the entropy of (in shannons) is given by
- ,
where is taken to be 0. The logarithms in this formula are usually taken (as shown in the graph) to the base 2. See binary logarithm.
When , the binary entropy function attains its maximum value. This is the case of an unbiased coin flip.
is distinguished from the entropy function in that the former takes a single real number as a parameter whereas the latter takes a distribution or random variable as a parameter. Sometimes the binary entropy function is also written as . However, it is different from and should not be confused with the Rényi entropy, which is denoted as .