Bernstein inequalities (probability theory)

In probability theory, Bernstein inequalities give bounds on the probability that the sum of random variables deviates from its mean. In the simplest case, let X1, ..., Xn be independent Bernoulli random variables taking values +1 and 1 with probability 1/2 (this distribution is also known as the Rademacher distribution), then for every positive ,

Bernstein inequalities were proven and published by Sergei Bernstein in the 1920s and 1930s. Later, these inequalities were rediscovered several times in various forms. Thus, special cases of the Bernstein inequalities are also known as the Chernoff bound, Hoeffding's inequality and Azuma's inequality. The martingale case of the Bernstein inequality is known as Freedman's inequality and its refinement is known as Hoeffding's inequality.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.