Bernoulli number

In mathematics, the Bernoulli numbers Bn are a sequence of rational numbers which occur frequently in analysis. The Bernoulli numbers appear in (and can be defined by) the Taylor series expansions of the tangent and hyperbolic tangent functions, in Faulhaber's formula for the sum of m-th powers of the first n positive integers, in the Euler–Maclaurin formula, and in expressions for certain values of the Riemann zeta function.

Bernoulli numbers B±
n
nfractiondecimal
01+1.000000000
1±1/2±0.500000000
21/6+0.166666666
30+0.000000000
41/30−0.033333333
50+0.000000000
61/42+0.023809523
70+0.000000000
81/30−0.033333333
90+0.000000000
105/66+0.075757575
110+0.000000000
12691/2730−0.253113553
130+0.000000000
147/6+1.166666666
150+0.000000000
163617/510−7.092156862
170+0.000000000
1843867/798+54.97117794
190+0.000000000
20174611/330−529.1242424

The values of the first 20 Bernoulli numbers are given in the adjacent table. Two conventions are used in the literature, denoted here by and ; they differ only for n = 1, where and . For every odd n > 1, Bn = 0. For every even n > 0, Bn is negative if n is divisible by 4 and positive otherwise. The Bernoulli numbers are special values of the Bernoulli polynomials , with and .

The Bernoulli numbers were discovered around the same time by the Swiss mathematician Jacob Bernoulli, after whom they are named, and independently by Japanese mathematician Seki Takakazu. Seki's discovery was posthumously published in 1712 in his work Katsuyō Sanpō; Bernoulli's, also posthumously, in his Ars Conjectandi of 1713. Ada Lovelace's note G on the Analytical Engine from 1842 describes an algorithm prepared by Babbage for generating Bernoulli numbers with Babbage's machine. As a result, the Bernoulli numbers have the distinction of being the subject of the first published complex computer program.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.