Bézout's identity

In mathematics, Bézout's identity (also called Bézout's lemma), named after Étienne Bézout who proved it for polynomials, is the following theorem:

Bézout's identity  Let a and b be integers with greatest common divisor d. Then there exist integers x and y such that ax + by = d. Moreover, the integers of the form az + bt are exactly the multiples of d.

Here the greatest common divisor of 0 and 0 is taken to be 0. The integers x and y are called Bézout coefficients for (a, b); they are not unique. A pair of Bézout coefficients can be computed by the extended Euclidean algorithm, and this pair is, in the case of integers one of the two pairs such that and equality occurs only if one of a and b is a multiple of the other.

As an example, the greatest common divisor of 15 and 69 is 3, and 3 can be written as a combination of 15 and 69 as 3 = 15 × (−9) + 69 × 2, with Bézout coefficients −9 and 2.

Many other theorems in elementary number theory, such as Euclid's lemma or the Chinese remainder theorem, result from Bézout's identity.

A Bézout domain is an integral domain in which Bézout's identity holds. In particular, Bézout's identity holds in principal ideal domains. Every theorem that results from Bézout's identity is thus true in all principal ideal domains.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.