Dominance (genetics)

Dominance, in genetics, is defined as the interactions between alleles at the same locus on homologous chromosomes and the associated phenotype . In the case of complete dominance, one allele in a heterozygote individual completely overrides or masks the phenotypic contribution of the other allele. The overriding allele is referred to as dominant and the masked one recessive . Complete dominance, also referred to as Mendelian inheritance, follow Mendel’s laws of segregation. The first law states that each allele in a pair of genes is separated at random and have an equal probability of being transferred to the next generation, while the second law states that the distribution of allele variants is done independently of each other. However, this is not always the case as not all genes segregate independently and violations of this law are often referred to as “non-Mendelian inheritance” .

The terms autosomal dominant or autosomal recessive are used to describe gene variants on non-sex chromosomes (autosomes) and their associated traits, while those on sex chromosomes (allosomes) are termed X-linked dominant, X-linked recessive or Y-linked; these have an inheritance and presentation pattern that depends on the sex of both the parent and the child (see Sex linkage). Since there is only one copy of the Y chromosome, Y-linked traits cannot be dominant or recessive.

Letters and Punnett squares are used to demonstrate the principles of dominance in teaching, and the upper-case letters are used to denote dominant alleles and lower-case letters are used for recessive alleles. An often quoted example of dominance is the inheritance of seed shape in peas. Peas may be round, associated with allele R, or wrinkled, associated with allele r. In this case, three combinations of alleles (genotypes) are possible: RR, Rr, and rr. The RR (homozygous) individuals have round peas, and the rr (homozygous) individuals have wrinkled peas. In Rr (heterozygous) individuals, the R allele masks the presence of the r allele, so these individuals also have round peas. Thus, allele R is dominant over allele r, and allele r is recessive to allele R .

Dominance is not inherent to an allele or its traits (phenotype). It is a strictly relative effect between two alleles of a given gene of any function; one allele can be dominant over a second allele of the same gene, recessive to a third, and co-dominant with a fourth. Additionally, one allele may be dominant for one trait but not others.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.