Artin approximation theorem
In mathematics, the Artin approximation theorem is a fundamental result of Michael Artin (1969) in deformation theory which implies that formal power series with coefficients in a field k are well-approximated by the algebraic functions on k.
More precisely, Artin proved two such theorems: one, in 1968, on approximation of complex analytic solutions by formal solutions (in the case ); and an algebraic version of this theorem in 1969.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.