Arithmetic function

In number theory, an arithmetic, arithmetical, or number-theoretic function is generally any function f(n) whose domain is the positive integers and whose range is a subset of the complex numbers. Hardy & Wright include in their definition the requirement that an arithmetical function "expresses some arithmetical property of n". There is a larger class of number-theoretic functions that do not fit this definition, for example, the prime-counting functions. This article provides links to functions of both classes.

An example of an arithmetic function is the divisor function whose value at a positive integer n is equal to the number of divisors of n.

Arithmetic functions are often extremely irregular (see table), but some of them have series expansions in terms of Ramanujan's sum.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.