Method of analytic tableaux

In proof theory, the semantic tableau (/tæˈbl, ˈtæbl/; plural: tableaux, also called truth tree) is a decision procedure for sentential and related logics, and a proof procedure for formulae of first-order logic. An analytic tableau is a tree structure computed for a logical formula, having at each node a subformula of the original formula to be proved or refuted. Computation constructs this tree and uses it to prove or refute the whole formula. The tableau method can also determine the satisfiability of finite sets of formulas of various logics. It is the most popular proof procedure for modal logics.

In his Symbolic Logic Part II, Charles Lutwidge Dodgson (also known by his literary pseudonym, Lewis Carroll) introduced the Method of Trees, the earliest modern use of a truth tree.

The method of semantic tableaux was invented by the Dutch logician Evert Willem Beth (Beth 1955) and simplified, for classical logic, by Raymond Smullyan (Smullyan 1968, 1995). It is Smullyan's simplification, "one-sided tableaux", that is described here. Smullyan's method has been generalized to arbitrary many-valued propositional and first-order logics by Walter Carnielli (Carnielli 1987). Tableaux can be intuitively seen as sequent systems upside-down. This symmetrical relation between tableaux and sequent systems was formally established in (Carnielli 1991).

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.