Acetone peroxide

Acetone peroxide

Cyclic dimer and trimer examples
Names
IUPAC names
3,3-Dimethyl-1,2-dioxacyclopropane (monomer)
3,3,6,6-Tetramethyl-1,2,4,5-tetraoxane (dimer)
3,3,6,6,9,9-Hexamethyl-1,2,4,5,7,8-hexaoxacyclononane (trimer)
3,3,6,6,9,9,12,12-Octamethyl-1,2,4,5,7,8,10,11-octaoxacyclododecane (tetramer)
Other names
Triacetone triperoxide
Peroxyacetone
Mother of Satan
Identifiers
3D model (JSmol)
ChemSpider
E number E929 (glazing agents, ...)
UNII
  • InChI=1S/C9H18O6/c1-7(2)10-12-8(3,4)14-15-9(5,6)13-11-7/h1-6H3 Y
    Key: ZTLXICJMNFREPA-UHFFFAOYSA-N Y
  • InChI=1/C9H18O6/c1-7(2)10-12-8(3,4)14-15-9(5,6)13-11-7/h1-6H3
    Key: ZTLXICJMNFREPA-UHFFFAOYAS
  • dimer: CC1(C)OOC(C)(C)OO1
  • trimer: CC1(C)OOC(C)(C)OOC(C)(C)OO1
Properties
C6H12O4 (dimer)
C9H18O6 (trimer)
C12H24O8 (tetramer)
Molar mass 148.157 g/mol (dimer)
222.24 g/mol (trimer)
296.296 g/mol (tetramer)
Appearance White crystalline solid
Melting point 131.5 to 133 °C (dimer)
91 °C (trimer)
Boiling point 97 to 160 °C (207 to 320 °F; 370 to 433 K)
Insoluble
Hazards
GHS labelling:
NFPA 704 (fire diamond)
1
4
4
Explosive data
Shock sensitivity High/High when wet
Friction sensitivity High/moderate when wet
Detonation velocity 5300 m/s at maximum density (1.18 g/cm3), about 2500–3000 m/s near 0.5 g/cm3
17,384 ft/s
3.29 miles per second
RE factor 0.80
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YN ?)
Infobox references

Acetone peroxide (/æsəˈtəʊn pɛrˈɒksd/ also called APEX and mother of Satan) is an organic peroxide and a primary explosive. It is produced by the reaction of acetone and hydrogen peroxide to yield a mixture of linear monomer and cyclic dimer, trimer, and tetramer forms. The dimer is known as diacetone diperoxide (DADP). The trimer is known as triacetone triperoxide (TATP) or tri-cyclic acetone peroxide (TCAP). Acetone peroxide takes the form of a white crystalline powder with a distinctive bleach-like odor (when impure) or a fruit-like smell when pure, and can explode powerfully if subjected to heat, friction, static electricity, concentrated sulfuric acid, strong UV radiation or shock. Until about 2015, explosives detectors were not set to detect non-nitrogenous explosives, as most explosives used preceding 2015 were nitrogen-based. TATP, being nitrogen-free, has been used as the explosive of choice in several terrorist bomb attacks since 2001.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.