Accelerator-driven subcritical reactor

An accelerator-driven subcritical reactor (ADSR) is a nuclear reactor design formed by coupling a substantially subcritical nuclear reactor core with a high-energy proton or electron accelerator. It could use thorium as a fuel, which is more abundant than uranium.

The neutrons needed for sustaining the fission process would be provided by a particle accelerator producing neutrons by spallation or photo-neutron production. These neutrons activate the thorium, enabling fission without needing to make the reactor critical. One benefit of such reactors is the relatively short half-lives of their waste products. For proton accelerators, the high-energy proton beam impacts a molten lead target inside the core, chipping or "spalling" neutrons from the lead nuclei. These spallation neutrons convert fertile thorium to protactinium-233 and after 27 days into fissile uranium-233 and drive the fission reaction in the uranium.

Thorium reactors can generate power from the plutonium residue left by uranium reactors. Thorium does not require significant refining, unlike uranium, and has a higher neutron yield per neutron absorbed.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.