15 and 290 theorems
In mathematics, the 15 theorem or Conway–Schneeberger Fifteen Theorem, proved by John H. Conway and W. A. Schneeberger in 1993, states that if a positive definite quadratic form with integer matrix represents all positive integers up to 15, then it represents all positive integers. The proof was complicated, and was never published. Manjul Bhargava found a much simpler proof which was published in 2000.
Bhargava used the occasion of his receiving the 2005 SASTRA Ramanujan Prize to announce that he and Jonathan P. Hanke had cracked Conway's conjecture that a similar theorem holds for integral quadratic forms, with the constant 15 replaced by 290. The proof has since appeared in preprint form.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.