Spark now offers predefined functions that can be used in dataframes, and it seems they are highly optimized. My original question was going to be on which is faster, but I did some testing myself and found the spark functions to be about 10 times…
I have dataframe in pyspark. Some of its numerical columns contain nan so when I am reading the data and checking for the schema of dataframe, those columns will have string type.
How I can change them to int type. I replaced the nan values with 0…
How can I use collect_set or collect_list on a dataframe after groupby. for example: df.groupby('key').collect_set('values'). I get an error: AttributeError: 'GroupedData' object has no attribute 'collect_set'
E.g
sqlContext = SQLContext(sc)
sample=sqlContext.sql("select Name ,age ,city from user")
sample.show()
The above statement prints theentire table on terminal. But I want to access each row in that table using for or while to perform further…
The goal of this question is to document:
steps required to read and write data using JDBC connections in PySpark
possible issues with JDBC sources and know solutions
With small changes these methods should work with other supported languages…
In pandas, this can be done by column.name.
But how to do the same when it's a column of Spark dataframe?
E.g. the calling program has a Spark dataframe: spark_df
>>> spark_df.columns
['admit', 'gre', 'gpa', 'rank']
This program calls my function:…
I would like to calculate group quantiles on a Spark dataframe (using PySpark). Either an approximate or exact result would be fine. I prefer a solution that I can use within the context of groupBy / agg, so that I can mix it with other PySpark…
I have a large pyspark.sql.dataframe.DataFrame and I want to keep (so filter) all rows where the URL saved in the location column contains a pre-determined string, e.g. 'google.com'.
I have tried:
import pyspark.sql.functions as…
I want to change names of two columns using spark withColumnRenamed function. Of course, I can write:
data = sqlContext.createDataFrame([(1,2), (3,4)], ['x1', 'x2'])
data = (data
.withColumnRenamed('x1','x3')
.withColumnRenamed('x2',…
I have been using PySpark with Ipython lately on my server with 24 CPUs and 32GB RAM. Its running only on one machine. In my process, I want to collect huge amount of data as is give in below code:
train_dataRDD = (train.map(lambda…
Short version of the question!
Consider the following snippet (assuming spark is already set to some SparkSession):
from pyspark.sql import Row
source_data = [
Row(city="Chicago", temperatures=[-1.0, -2.0, -3.0]),
Row(city="New York",…
I have the following sample DataFrame:
a | b | c |
1 | 2 | 4 |
0 | null | null|
null | 3 | 4 |
And I want to replace null values only in the first 2 columns - Column "a" and "b":
a | b | c |
1 | 2 | 4 …
In Spark version 1.2.0 one could use subtract with 2 SchemRDDs to end up with only the different content from the first one
val onlyNewData = todaySchemaRDD.subtract(yesterdaySchemaRDD)
onlyNewData contains the rows in todaySchemRDD that do not…
I want to filter dataframe according to the following conditions firstly (d<5) and secondly (value of col2 not equal its counterpart in col4 if value in col1 equal its counterpart in col3).
If the original dataframe DF is as…