Here are the results of my experience implementing OpenGL ES 2.0 support for various platforms on which my commercial mapping and routing library runs.
The rendering class is designed to run in a separate thread. It has a reference to the object containing the map data and the current view information, and uses mutexes to avoid conflicts when reading that information at the time of drawing. It maintains a cache of OpenGL ES vector data in graphics memory.
All the rendering logic is written in C++ and is used on all the following platforms.
Windows (MFC)
Use the ANGLE library: link to libEGL.lib and libGLESv2.lib and ensure that the executable has access to the DLLs libEGL.dll and libGLESv2.dll. The C++ code creates a thread that redraws the graphics at a suitable rate (e.g., 25 times a second).
Windows (.NET and WPF)
Use a C++/CLI wrapper to create an EGL context and to call the C++ rendering code that is used directly in the MFC implementation. The C++ code creates a thread that redraws the graphics at a suitable rate (e.g., 25 times a second).
Windows (UWP)
Create the EGL context in the UWP app code and call the C++ rendering code via the a a C++/CXX wrapper. You will need to use a SwapChainPanel and create your own render loop running in a different thread. See the GLUWP project for sample code.
Qt on Windows, Linux and Mac OS
Use a QOpenGLWidget as your windows. Use the Qt OpenGL ES wrapper to create the EGL context, then call the C++ rendering code in your paintGL() function.
Android
Create a renderer class implementing android.opengl.GLSurfaceView.Renderer. Create a JNI wrapper for the C++ rendering object. Create the C++ rendering object in your onSurfaceCreated() function. Call the C++ rendering object's drawing function in your onDrawFrame() function. You will need to import the following libraries for your renderer class:
import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;
import android.opengl.GLSurfaceView.Renderer;
Create a view class derived from GLSurfaceView. In your view class's constructor first set up your EGL configuration:
setEGLContextClientVersion(2); // use OpenGL ES 2.0
setEGLConfigChooser(8,8,8,8,24,0);
then create an instance of your renderer class and call setRenderer to install it.
iOS
Use the METALAngle library, not GLKit, which Apple has deprecated and will eventually no longer support.
Create an Objective C++ renderer class to call your C++ OpenGL ES drawing logic.
Create a view class derived from MGLKView. In your view class's drawRect() function, create a renderer object if it doesn't yet exist, then call its drawing function. That is, your drawRect function should be something like:
-(void)drawRect:(CGRect)rect
{
if (m_renderer == nil && m_my_other_data != nil)
m_renderer = [[MyRenderer alloc] init:m_my_other_data];
if (m_renderer)
[m_renderer draw];
}
In your app you'll need a view controller class that creates the OpenGL context and sets it up, using code like this:
MGLContext* opengl_context = [[MGLContext alloc] initWithAPI:kMGLRenderingAPIOpenGLES2];
m_view = [[MyView alloc] initWithFrame:aBounds context:opengl_context];
m_view.drawableDepthFormat = MGLDrawableDepthFormat24;
self.view = m_view;
self.preferredFramesPerSecond = 30;
Linux
It is easiest to to use Qt on Linux (see above) but it's also possible to use the GLFW framework. In your app class's constructor, call glfwCreateWindow to create a window and store it as a data member. Call glfwMakeContextCurrent to make the EGL context current, then create a data member holding an instance of your renderer class; something like this:
m_window = glfwCreateWindow(1024,1024,"My Window Title",nullptr,nullptr);
glfwMakeContextCurrent(m_window);
m_renderer = std::make_unique<CMyRenderer>();
Add a Draw function to your app class:
bool MapWindow::Draw()
{
if (glfwWindowShouldClose(m_window))
return false;
m_renderer->Draw();
/* Swap front and back buffers */
glfwSwapBuffers(m_window);
return true;
}
Your main() function will then be:
int main(void)
{
/* Initialize the library */
if (!glfwInit())
return -1;
// Create the app.
MyApp app;
/* Draw continuously until the user closes the window */
while (app.Draw())
{
/* Poll for and process events */
glfwPollEvents();
}
glfwTerminate();
return 0;
}
Shader incompatibilities
There are incompatibilities in the shader language accepted by the various OpenGL ES 2.0 implementations. I overcome these in the C++ code using the following conditionally compiled code in my CompileShader function:
const char* preamble = "";
#if defined(_POSIX_VERSION) && !defined(ANDROID) && !defined(__ANDROID__) && !defined(__APPLE__) && !defined(__EMSCRIPTEN__)
// for Ubuntu using Qt or GLFW
preamble = "#version 100\n";
#elif defined(USING_QT) && defined(__APPLE__)
// On the Mac #version doesn't work so the precision qualifiers are suppressed.
preamble = "#define lowp\n#define mediump\n#define highp\n";
#endif
The preamble
is then prefixed to the shader code.