In the documentation for GPT-3 API, it says:
One limitation to keep in mind is that, for most models, a single API request can only process up to 2,048 tokens (roughly 1,500 words) between your prompt and completion.
In the documentation for fine tuning model, it says:
The more training samples you have, the better. We recommend having at least a couple hundred examples. in general, we've found that each doubling of the dataset size leads to a linear increase in model quality.
My question is, does the 1,500 words limit also apply to fine tune model? Does "Doubling of the dataset size" mean number of training datasets instead of size of each training dataset?