0

I'm doing a Image Classification on Diabetic Retinopathy. The data distribution is uneven .The images of each label is distributed like this.

0 1805

2 999

1 370

4 295

3 193

The images in label 0 are in high numbers than other . So I want to add perform data augumentation on other labels to increase the no of images equal to that of label 0

train_data_gen = ImageDataGenerator(rescale = 1./255, validation_split=train_val_split) train_generator = train_data_gen.flow_from_directory( directory='/kaggle/input/traindata/train', target_size = (224,224), batch_size = 32, class_mode = 'categorical', subset='training') validation_generator = train_data_gen.flow_from_directory( directory='/kaggle/input/traindata/train', target_size = (224,224), batch_size = 32, class_mode = 'categorical', subset='validation')

I'm using ImageDataGenerator . SO anyone help me out to oversample all samples using data augumentation.

0 Answers0