0

My problem is described in this picture(It's like a Pyramid structure):

enter image description here

The objective function is below:

enter image description here

In this problem, D is known, A is the object that I want to get. It is a layered structure, each block in the upper layer is divided into four sub-blocks in the layer below. And the value of the upper layer node is equal to the sum of the four child nodes of the lower layer. In above example, I used only 2 layers.

What I want to do is simulate the distribution of D with A, so in the objective function is the ratio of two adjacent squares in each row in A compared to the value in D. I do this comparison on each layer and sum them. Then it is all of my objective function. But in the finest layer, the value in A has a constrain A<=1, the value in A can be a number between 0 and 1. I have tried to solve it using Quadratic programming in python library CVXPY. However, it seems the speed is slow.

So I want to solve it in another way, because this is a convex optimization problem, which can guarantee the global optimal solution. What I think is whether it is possible to use the method of derivation. There are two unknown variables in each item, that is, the two items with A in the formula. Partial derivatives are obtained for them, and the restriction of A<=1 is added, then solve using gradient descent method. Is this mathematically feasible, because I don't know much about optimization, and if it is possible, how should I do it? If not possible, what other methods can I use?

happy
  • 67
  • 7

0 Answers0