1

I've read a ton of posts and am trying to teach myself linear mixed effects model analysis in R, so I appreciate any help I can get. I really just need to brainstorm with someone who knows what's going on, and I don't have access to that easily.

My models are of the structure:

Dependent Variable ~ Predictor Variable + Task + Task*Predictor Variable + Group + Predictor Variable*Group + (1|Subject)

example model here:

RR_MoSml_hs <- lmer_alt(av_MoSml_hs ~ av_RR + TrialType + TrialType*av_RR + group + av_RR*group + (1|Subject), data=df)

Task has 2 levels (FW and SS), while Group has 4 levels (YA, HFOA, LFOA1, LFOA2), while both dependent and predictor variables are continuous. Task is a within-subject repeated measure while group is between subjects.

I essentially want to know how task and group impact the relationship between the dependent and predictor variables.

I have a number of models that lmer_alt indicates have significant interaction effects.

I have a few questions:

  1. I think I need to add the interaction between task and group into my models? I'm not sure why I didn't do this before, but if someone is able to chime in about whether I should that would be great. There are group effects on task, from just prior ANOVA models, so I think I should add them into these?

  2. I've been trying to use emmeans() to run post-hoc tests on the significant interaction effects indicated by the model. This makes sense if I do the interaction between the two categorical variables like this:

emmeans(RR_MoSml_hs,pairwise ~ TrialType*group, adjust="tukey")

Which gives an output of:

$emmeans
 TrialType group    emmean      SE  df lower.CL upper.CL
 'FW'      hfoa     0.1000 0.00261 158   0.0948    0.105
 'SS'      hfoa     0.1000 0.00292 157   0.0942    0.106
 'FW'      lfoa_flg 0.1205 0.00149 122   0.1175    0.123
 'SS'      lfoa_flg 0.1205 0.00155 124   0.1174    0.124
 'FW'      lfoa_va  0.0982 0.00226 165   0.0938    0.103
 'SS'      lfoa_va  0.0982 0.00217 165   0.0940    0.103
 'FW'      ya       0.1038 0.00293 160   0.0980    0.110
 'SS'      ya       0.1038 0.00323 162   0.0974    0.110

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

$contrasts
 contrast                       estimate       SE  df t.ratio p.value
 'FW' hfoa - 'SS' hfoa         -1.91e-05 0.000615 133  -0.031  1.0000
 'FW' hfoa - 'FW' lfoa_flg     -2.05e-02 0.003163 145  -6.479  <.0001
 'FW' hfoa - 'SS' lfoa_flg     -2.05e-02 0.002981 148  -6.881  <.0001
 'FW' hfoa - 'FW' lfoa_va       1.74e-03 0.003700 155   0.469  0.9998
 'FW' hfoa - 'SS' lfoa_va       1.72e-03 0.003462 157   0.496  0.9997
 'FW' hfoa - 'FW' ya           -3.82e-03 0.003406 155  -1.123  0.9509
 'FW' hfoa - 'SS' ya           -3.84e-03 0.003476 149  -1.106  0.9547
 'SS' hfoa - 'FW' lfoa_flg     -2.05e-02 0.003447 150  -5.940  <.0001
 'SS' hfoa - 'SS' lfoa_flg     -2.05e-02 0.003163 145  -6.479  <.0001
 'SS' hfoa - 'FW' lfoa_va       1.76e-03 0.004019 157   0.437  0.9999
 'SS' hfoa - 'SS' lfoa_va       1.74e-03 0.003700 155   0.469  0.9998
 'SS' hfoa - 'FW' ya           -3.81e-03 0.003445 160  -1.105  0.9550
 'SS' hfoa - 'SS' ya           -3.82e-03 0.003406 155  -1.123  0.9509
 'FW' lfoa_flg - 'SS' lfoa_flg -1.91e-05 0.000615 133  -0.031  1.0000
 'FW' lfoa_flg - 'FW' lfoa_va   2.22e-02 0.002602 154   8.543  <.0001
 'FW' lfoa_flg - 'SS' lfoa_va   2.22e-02 0.002561 158   8.671  <.0001
 'FW' lfoa_flg - 'FW' ya        1.67e-02 0.003519 171   4.737  0.0001
 'FW' lfoa_flg - 'SS' ya        1.66e-02 0.003790 171   4.393  0.0005
 'SS' lfoa_flg - 'FW' lfoa_va   2.22e-02 0.002781 159   8.000  <.0001
 'SS' lfoa_flg - 'SS' lfoa_va   2.22e-02 0.002602 154   8.543  <.0001
 'SS' lfoa_flg - 'FW' ya        1.67e-02 0.003340 171   4.996  <.0001
 'SS' lfoa_flg - 'SS' ya        1.67e-02 0.003519 171   4.737  0.0001
 'FW' lfoa_va - 'SS' lfoa_va   -1.91e-05 0.000615 133  -0.031  1.0000
 'FW' lfoa_va - 'FW' ya        -5.56e-03 0.003999 171  -1.391  0.8605
 'FW' lfoa_va - 'SS' ya        -5.58e-03 0.004308 170  -1.295  0.8996
 'SS' lfoa_va - 'FW' ya        -5.54e-03 0.003765 170  -1.472  0.8214
 'SS' lfoa_va - 'SS' ya        -5.56e-03 0.003999 171  -1.391  0.8605
 'FW' ya - 'SS' ya             -1.91e-05 0.000615 133  -0.031  1.0000

Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 8 estimates 

My question is what is this estimate value? Can I think of it as the R value of the regression fit? Or is it dependent on what my dependent and predictor variable units are? I'm also assuming I need to change the emmeans code for each significant interaction effect but how do I do this for the interactions between the continuous and categorical variables? Is it just:

emmeans(RR_MoSml_hs,pairwise ~ group, adjust="tukey")

which gives

NOTE: Results may be misleading due to involvement in interactions
$emmeans
 group    emmean      SE  df lower.CL upper.CL
 hfoa     0.1000 0.00275 157   0.0945    0.105
 lfoa_flg 0.1205 0.00149 118   0.1175    0.123
 lfoa_va  0.0982 0.00219 164   0.0939    0.103
 ya       0.1038 0.00307 161   0.0977    0.110

Results are averaged over the levels of: TrialType 
Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

$contrasts
 contrast           estimate      SE  df t.ratio p.value
 hfoa - lfoa_flg    -0.02049 0.00316 145  -6.479  <.0001
 hfoa - lfoa_va      0.00174 0.00370 155   0.469  0.9657
 hfoa - ya          -0.00382 0.00341 155  -1.123  0.6759
 lfoa_flg - lfoa_va  0.02223 0.00260 154   8.543  <.0001
 lfoa_flg - ya       0.01667 0.00352 171   4.737  <.0001
 lfoa_va - ya       -0.00556 0.00400 171  -1.391  0.5070

Results are averaged over the levels of: TrialType 
Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 4 estimates 

or do I need to add in the continuous variable here too?

emmeans(RR_MoSml_hs,pairwise ~ av_RR*group, adjust="tukey")

because this output just genuinely confuses me!

$emmeans
 av_RR group    emmean      SE  df lower.CL upper.CL
  1.14 hfoa     0.1000 0.00275 157   0.0945    0.105
  1.14 lfoa_flg 0.1205 0.00149 118   0.1175    0.123
  1.14 lfoa_va  0.0982 0.00219 164   0.0939    0.103
  1.14 ya       0.1038 0.00307 161   0.0977    0.110

Results are averaged over the levels of: TrialType 
Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

$contrasts
 contrast                                                       estimate      SE  df t.ratio p.value
 av_RR1.14153257835045 hfoa - av_RR1.14153257835045 lfoa_flg    -0.02049 0.00316 145  -6.479  <.0001
 av_RR1.14153257835045 hfoa - av_RR1.14153257835045 lfoa_va      0.00174 0.00370 155   0.469  0.9657
 av_RR1.14153257835045 hfoa - av_RR1.14153257835045 ya          -0.00382 0.00341 155  -1.123  0.6759
 av_RR1.14153257835045 lfoa_flg - av_RR1.14153257835045 lfoa_va  0.02223 0.00260 154   8.543  <.0001
 av_RR1.14153257835045 lfoa_flg - av_RR1.14153257835045 ya       0.01667 0.00352 171   4.737  <.0001
 av_RR1.14153257835045 lfoa_va - av_RR1.14153257835045 ya       -0.00556 0.00400 171  -1.391  0.5070

Results are averaged over the levels of: TrialType 
Degrees-of-freedom method: kenward-roger 
P value adjustment: tukey method for comparing a family of 4 estimates 

As I'm sure you can tell, I am very new to this but I appreciate any and all help I can get! Thanks in advance.

  • I would post this on CrossValidated. This seems like more a stats than a programming question, and you'll surely get more insight from that site. – nathan liang Sep 30 '22 at 15:49

0 Answers0