I am new in machine learning. I am making a Streamlit app for multiclass classification using artificial neural network. My question is about the ANN model, not about the Streamlit. I know I can use MLPClassifier, but I want to build and train my own model. So, I used the following code to analyze the following data.-
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.layers import Dropout
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.metrics import plot_roc_curve, roc_auc_score, roc_curve
from sklearn.model_selection import cross_val_score, cross_validate
from sklearn.model_selection import GridSearchCV
df=pd.read_csv("./Churn_Modelling.csv")
#Drop Unwanted features
df.drop(columns=['Surname','RowNumber','CustomerId'],inplace=True)
df.head()
#Label Encoding of Categ features
df['Geography']=df['Geography'].map({'France':0,'Spain':1,'Germany':2})
df['Gender']=df['Gender'].map({'Male':0,'Female':1})
#Input & Output selection
X=df.drop('Exited',axis=1)
Y = df['Exited']
Y = df['Exited'].map({'yes':1, 'no':2, 'maybe':3})
#train test split
from sklearn.model_selection import train_test_split
X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.3,random_state=12,stratify=Y)
#scaling
from sklearn.preprocessing import StandardScaler
ss = StandardScaler()
X_train = ss.fit_transform(X_train)
Y_train = ss.fit_transform(Y_train)
X_test=ss.transform(X_test)
# build a model
#build ANN
model=Sequential()
model.add(Dense(units=30,activation='relu',input_shape=(X.shape[1],)))
model.add(Dropout(rate = 0.2))
model.add(Dense(units=18,activation='relu'))
model.add(Dropout(rate = 0.1))
model.add(Dense(units=1,activation='sigmoid'))
model.compile(optimizer = 'adam', loss = 'categorical_crossentropy', metrics = ['accuracy'])
#create callback : -
cb=EarlyStopping(
monitor="val_loss", #val_loss means testing error
min_delta=0.00001, #value of lambda
patience=15,
verbose=1,
mode="auto", #minimize loss #maximize accuracy
baseline=None,
restore_best_weights=False
)
trained_model=model.fit(X_train,Y_train,epochs=10,
validation_data=(X_test,Y_test),
callbacks=cb,
batch_size=10
)
model.evaluate(X_train,Y_train)
print("Training accuracy :",model.evaluate(X_train,Y_train)[1])
print("Training loss :",model.evaluate(X_train,Y_train)[0])
model.evaluate(X_test,Y_test)
print("Testing accuracy :",model.evaluate(X_test,Y_test)[1])
print("Testing loss :",model.evaluate(X_test,Y_test)[0])
y_pred_prob=model.predict(X_test)
y_pred=np.argmax(y_pred_cv, axis=-1)
print(classification_report(Y_test,y_pred))
print(confusion_matrix(Y_test,y_pred))
plt.figure(figsize=(7,5))
sns.heatmap(confusion_matrix(Y_test,y_pred),annot=True,cmap="OrRd_r",
fmt="d",cbar=True,
annot_kws={"fontsize":15})
plt.xlabel("Actual Result")
plt.ylabel("Predicted Result")
plt.show()
Then, I will save the model either by using pickle as follows-
# pickle_out = open("./my_model.pkl", mode = "wb")
# pickle.dump(my_model, pickle_out)
# pickle_out.close()
or as follows-
model.save('./my_model.h5')
Now, I want to predict the label (i.e. 'yes', 'no', 'maybe' etc.) of output variable 'Existed' based on new input values (as shown in the following table) that will be provided by an user -
.
My question is that how should I save and load the model followed by predicting the labels for 'Existed' variable, so that it will automatically fill up the empty cell of Exited column with respective labels (i.e. 'yes', 'no', 'maybe' etc.).
I will appreciate your insightful comments on this post.