I am attempting to implement a decorator that receives a function, parses it into an AST, eventually will do something to the AST, then reconstruct the original (or modified) function from the AST and return it. My current approach is, once I have the AST, compile
it to a code <module>
object, then get the constant in it with the name of the function, convert it to FunctionType
, and return it. I have the following:
import ast, inspect, types
def as_ast(f):
source = inspect.getsource(f)
source = '\n'.join(source.splitlines()[1:]) # Remove as_ast decoration, pretend there can be no other decorations for now
tree = ast.parse(source)
print(ast.dump(tree, indent=4)) # Debugging log
# I would modify the AST somehow here
filename = f.__code__.co_filename
code = compile(tree, filename, 'exec')
func_code = next(
filter(
lambda x: isinstance(x, types.CodeType) and x.co_name == f.__name__,
code.co_consts)) # Get function object
func = types.FunctionType(func_code, {})
return func
@as_ast
def test(arg: int=4):
print(f'{arg=}')
Now, I would expect that calling test
later in this source code will simply have the effect of calling test
if the decorator were absent, which is what I observe, so long as I pass an argument for arg
. However, if I pass no argument, instead of using the default I gave (4
), it throws a TypeError
for the missing argument. This makes it pretty clear that my approach for getting a callable function from the AST is not quite correct, as the default argument is not applied, and there may be other details that would slip through as it is now. How might I be able to correctly recreate the function from the AST? The way I currently go from the code module object to the function code object also seems... off intuitively, but I do not know how else one might achieve this.