-1

So I'm doing this project on empty shelf detection in store and sending alert through sns and I'm am not able to get any source on how to complete it. I'm coding on google colab. I trained my images on YOLO and tensor flow. And I've a working live feed showing me the object detection. But now I want my object to detect empty shelf when the items are removed then send an alert to the said number or account. Can anyone help me on how to achieve this? or anyway to compare the two images like from planogram and captured feed, then send alert on the missing item. Thanks.

1 Answers1

0

I answer for the image categorized task but SNS you need to request for interface allows or specification methods.

You can find the code from the Internet but we are also trying and specification is important since two-sided communication they ar expecting the same definitions.

Some messages server may delays to crashes with communication forwards when you are not sending correct messages.

We will help the image categorizes task.

[ Sample ]: The list of communication target expecting you create folders or queues for target server you may utilized this codes samples.

import tensorflow as tf
import tensorflow_io as tfio

import pandas as pd

import matplotlib.pyplot as plt

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
Variables
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
list_label_actual = [ 'Candidt Kibt', 'Pikaploy' ]

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
: Dataset
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
variables = pd.read_excel('F:\\temp\\Python\\excel\\Book 7.xlsx', index_col=None, header=[0])

list_label = [ ]
list_Image = [ ]
list_file_actual = [ ]

for Index, Image, Label in variables.values:
    print( Label )
    list_label.append( Label )
    
    image = tf.io.read_file( Image )
    image = tfio.experimental.image.decode_tiff(image, index=0)
    list_file_actual.append(image)
    image = tf.image.resize(image, [32,32], method='nearest')
    list_Image.append(image)


list_label = tf.cast( list_label, dtype=tf.int32 )
list_label = tf.constant( list_label, shape=( 33, 1, 1 ) )
list_Image = tf.cast( list_Image, dtype=tf.int32 )
list_Image = tf.constant( list_Image, shape=( 33, 1, 32, 32, 4 ) )

dataset = tf.data.Dataset.from_tensor_slices(( list_Image, list_label ))
list_Image = tf.constant( list_Image, shape=( 33, 32, 32, 4) ).numpy()

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
: Model Initialize
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
model = tf.keras.models.Sequential([
    tf.keras.layers.InputLayer(input_shape=( 32, 32, 4 )),
    tf.keras.layers.Normalization(mean=3., variance=2.),
    tf.keras.layers.Normalization(mean=4., variance=6.),
    tf.keras.layers.Dense(256, activation='relu'),
    tf.keras.layers.Reshape((256, 32 * 32)),
    tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(196, return_sequences=True, return_state=False)),
    tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(196)),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(192, activation='relu'),
    tf.keras.layers.Dense(2),
])

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
: Callback
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
class custom_callback(tf.keras.callbacks.Callback):
    def on_epoch_end(self, epoch, logs={}):
        if( logs['accuracy'] >= 0.97 ):
            self.model.stop_training = True
    
custom_callback = custom_callback()

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
: Optimizer
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
optimizer = tf.keras.optimizers.Nadam(
    learning_rate=0.000001, beta_1=0.9, beta_2=0.999, epsilon=1e-07,
    name='Nadam'
)

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
: Loss Fn
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""                               
lossfn = tf.keras.losses.SparseCategoricalCrossentropy(
    from_logits=False,
    reduction=tf.keras.losses.Reduction.AUTO,
    name='sparse_categorical_crossentropy'
)

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
: Model Summary
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
model.compile(optimizer=optimizer, loss=lossfn, metrics=['accuracy'] )

"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
: Training
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
history = model.fit( dataset, batch_size=100, epochs=50, callbacks=[custom_callback] )

plt.figure(figsize=(6,6))
plt.title("Actors recognitions")
for i in range(len(list_Image)):
    img = tf.keras.preprocessing.image.array_to_img(
        list_Image[i],
        data_format=None,
        scale=True
    )
    img_array = tf.keras.preprocessing.image.img_to_array(img)
    img_array = tf.expand_dims(img_array, 0)
    predictions = model.predict(img_array)
    score = tf.nn.softmax(predictions[0])
    plt.subplot(6, 6, i + 1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(list_file_actual[i])
    plt.xlabel(str(round(score[tf.math.argmax(score).numpy()].numpy(), 2)) + ":" +  str(list_label_actual[tf.math.argmax(score)]))
    
plt.show()

input('...')

[ Output ]:

Sample

General Grievance
  • 4,555
  • 31
  • 31
  • 45