I am following a tutorial to fin-tune a SOTA model with MXNet. I am doing it in Google Colab: https://cv.gluon.ai/build/examples_action_recognition/finetune_custom.html
However, I am unable to make it work. I believe it has to do with the version of MXNEt and Cuda version in Google Colab. I am getting this error:
MXNetError: Traceback (most recent call last):
File "../src/ndarray/../operator/tensor/./../mxnet_op.h", line 1120
Name: Check failed: err == cudaSuccess (209 vs. 0) : mxnet_generic_kernel ErrStr:no kernel image is available for execution on the device
when it reaches this part:
train_loss += sum([l.mean().asscalar() for l in loss])
The version of CUDA I get is the following
!nvcc --version # para mirar la version de CUDA
!nvidia-smi
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2020 NVIDIA Corporation
Built on Mon_Oct_12_20:09:46_PDT_2020
Cuda compilation tools, release 11.1, V11.1.105
Build cuda_11.1.TC455_06.29190527_0
Wed Mar 16 22:13:40 2022
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 460.32.03 Driver Version: 460.32.03 CUDA Version: 11.2 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla K80 Off | 00000000:00:04.0 Off | 0 |
| N/A 71C P8 33W / 149W | 0MiB / 11441MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
Last time I ran it, it worked but after 2 weeks I tried to ran the same notebook and I am unable to make it work. This is how I installed the libraries I need:
!pip install mxnet-cu110
!pip install torch==1.8.0 torchvision
!pip install gluoncv[full]
!pip install mmcv
Any help would be very much appreciated. Thanks!