I have built a multi-step, multi-variate LSTM model to predict the target variable 5 days into the future with 5 days of look-back. The model runs smooth (even though it has to be further improved), but I cannot correctly invert the transformation applied, once I get my predictions. I have seen on the web that there are many ways to pre-process and transform data. I decided to follow these steps:
- Data fetching and cleaning
df = yfinance.download(['^GSPC', '^GDAXI', 'CL=F', 'AAPL'], period='5y', interval='1d')['Adj Close'];
df.dropna(axis=0, inplace=True)
df.describe()
Data set table
- Split the data set into train and test
size = int(len(df) * 0.80)
df_train = df.iloc[:size]
df_test = df.iloc[size:]
- Scaled train and test sets separately with MinMaxScaler()
scaler = MinMaxScaler(feature_range=(0,1))
df_train_sc = scaler.fit_transform(df_train)
df_test_sc = scaler.transform(df_test)
- Creation of 3D X and y time-series compatible with the LSTM model
I borrowed the following function from this article
def create_X_Y(ts: np.array, lag=1, n_ahead=1, target_index=0) -> tuple:
"""
A method to create X and Y matrix from a time series array for the training of
deep learning models
"""
# Extracting the number of features that are passed from the array
n_features = ts.shape[1]
# Creating placeholder lists
X, Y = [], []
if len(ts) - lag <= 0:
X.append(ts)
else:
for i in range(len(ts) - lag - n_ahead):
Y.append(ts[(i + lag):(i + lag + n_ahead), target_index])
X.append(ts[i:(i + lag)])
X, Y = np.array(X), np.array(Y)
# Reshaping the X array to an RNN input shape
X = np.reshape(X, (X.shape[0], lag, n_features))
return X, Y
#In this example let's assume that the first column (AAPL) is the target variable.
trainX,trainY = create_X_Y(df_train_sc,lag=5, n_ahead=5, target_index=0)
testX,testY = create_X_Y(df_test_sc,lag=5, n_ahead=5, target_index=0)
- Model creation
def build_model(optimizer):
grid_model = Sequential()
grid_model.add(LSTM(64,activation='tanh', return_sequences=True,input_shape=(trainX.shape[1],trainX.shape[2])))
grid_model.add(LSTM(64,activation='tanh', return_sequences=True))
grid_model.add(LSTM(64,activation='tanh'))
grid_model.add(Dropout(0.2))
grid_model.add(Dense(trainY.shape[1]))
grid_model.compile(loss = 'mse',optimizer = optimizer)
return grid_model
grid_model = KerasRegressor(build_fn=build_model,verbose=1,validation_data=(testX,testY))
parameters = {'batch_size' : [12,24],
'epochs' : [8,30],
'optimizer' : ['adam','Adadelta'] }
grid_search = GridSearchCV(estimator = grid_model,
param_grid = parameters,
cv = 3)
grid_search = grid_search.fit(trainX,trainY)
grid_search.best_params_
my_model = grid_search.best_estimator_.model
- Get predictions
yhat = my_model.predict(testX)
- Invert transformation of predictions and actual values
Here my problems begin, because I am not sure which way to go. I have read many tutorials, but it seems that those authors prefer to apply MinMaxScaler() on the entire dataset before splitting the data into train and test. I do not agree on this, because, otherwise, training data will be incorrectly scaled with information we should not use (i.e. the test set). So, I followed my approach, but I am stucked here.
I found this possible solution on another post, but it's not working for me:
# invert scaling for forecast
pred_scaler = MinMaxScaler(feature_range=(0, 1)).fit(df_test.values[:,0].reshape(-1, 1))
inv_yhat = pred_scaler.inverse_transform(yhat)
# invert scaling for actual
inv_y = pred_scaler.inverse_transform(testY)
In fact, when I double check the last values of the target from my original data set they don't match with the inverted scaled version of the testY.
Can someone please help me on this? Many thanks in advance for your support!