I got the following dataset with daily data:
Name Target Sales
Datetime
2021-06-01 Amy 9615.4 11800
2021-06-02 Amy 9615.4 0
...
2021-06-30 Amy 9615.4 197.5
2021-07-01 Amy 9259.3 20672
2021-07-02 Amy 9259.3 46523
...
2021-07-31 Amy 9259.3 130
2021-06-01 Zoe 9615.4 33492
2021-06-02 Zoe 9615.4 0
...
2021-06-30 Zoe 9615.4 0
2021-07-01 Zoe 9259.3 0
2021-07-02 Zoe 9259.3 0
...
2021-07-31 Zoe 9259.3 0
And I would like to resample as weekly data. so I performed this code:
sum_dict = {'Target':'sum' , 'Sales': 'sum'}
month_week = month_df.groupby(['Name']).resample('W').apply(sum_dict)
month_week = month_week.reset_index(level=['Name'])
However, I got the result as below which is not desired:
Name Target Sales
Datetime
2021-06-06 Amy 48076.9 120736.4
2021-06-13 Amy 57692.3 183549
...
2021-06-27 Amy 57692.3 1033.8
2021-07-04 Amy 28846.2 867.5
2021-07-04 Amy 27777.8 80755
...
2021-07-25 Amy 55555.5 -538.1
2021-08-01 Amy 55555.5 19094.5
2021-06-06 Zoe 48076.9 33492
2021-06-13 Zoe 57692.3 145898
...
2021-06-27 Zoe 57692.3 258
2021-07-04 Zoe 28846.2 0
2021-07-04 Zoe 27777.8 35292
...
2021-07-25 Zoe 55555.5 54280
2021-08-01 Zoe 55555.5 0
As you can see that both Amy and Zoe weekly data contains the same index after resampling, which is 2021-07-04
.
How could I get different indices after resampling? Thanks!