You could convert to TimeDelta
, floor
the result, and use it to groupby
+agg
:
t = pd.to_timedelta(df['Time']+':00')
(df
.groupby([t.dt.floor('5min'), 'Gender'])
.agg({'value': 'sum'})
.reset_index()
)
output:
Time Gender value
0 0 days 10:00:00 Female 1
1 0 days 10:00:00 Male 15
2 0 days 10:05:00 Female 2
3 0 days 10:05:00 Male 15
4 0 days 10:10:00 Male 5
matching the provided output
To match your provided output, it needs a few more things.
- subtracting one minute to floor '00:05:00' on '00:00:00'
- converting back to string
t = pd.to_timedelta(df['Time']+':00').sub(pd.to_timedelta('1min'))
(df
.groupby([t.dt.floor('5min'), 'Gender'])
.agg({'value': 'sum'})
.reset_index()
.assign(Time=lambda d: (pd.to_datetime(0)+d['Time']).dt.strftime('%H:%M'))
)
output:
Time Gender value
0 10:00 Female 2
1 10:00 Male 15
2 10:05 Female 1
3 10:05 Male 20
variant
t = pd.to_timedelta(df['Time']+':00').sub(pd.to_timedelta('1min'))
(df.assign(Time=t.dt.floor('5min').astype(str).str[-8:-3])
.groupby(['Time', 'Gender'])
['value'].sum().reset_index()
)