I want to plot the motion of a double pendulum with a spring in python. I need to plot the theta1, theta2, r, and their first derivatives. I have found my equations for the motion, which are second-order ODEs so I then converted them to first-order ODEs where x1=theta1, x2=theta1-dot, y1=theta2, y2=theta2-dot, z1=r, and z2=r-dot. Here is a picture of the double pendulum problem: enter image description here
Here is my code:
from scipy.integrate import solve_ivp
from numpy import pi, sin, cos, linspace
g = 9.806 #Gravitational acceleration
l0 = 1 #Natural length of spring is 1
k = 2 #K value for spring is 2
OA = 2 #Length OA is 2
m = 1 #Mass of the particles is 1
def pendulumDynamics1(t, x): #Function to solve for theta-1 double-dot
x1 = x[0]
x2 = x[1]
y1 = y[0]
y2 = y[1]
z1 = z[0]
z2 = z[1]
Fs = -k*(z1-l0)
T = m*(x2**2)*OA + m*g*cos(x1) + Fs*cos(y1-x1)
x1dot = x2
x2dot = (Fs*sin(y1-x1) - m*g*sin(x1))/(m*OA) # angles are in radians
return [x1dot,x2dot]
def pendulumDynamics2(t, y): #Function to solve for theta-2 double-dot
x1 = x[0]
x2 = x[1]
y1 = y[0]
y2 = y[1]
z1 = z[0]
z2 = z[1]
Fs = -k*(z1-l0)
y1dot = y2
y2dot = (-g*sin(y1) - (Fs*cos(y1-x1)*sin(x1))/m + g*cos(y1-x1)*sin(x1) - x2*z1*sin(x1))/z1
return [y1dot,y2dot]
def pendulumDynamics3(t, z): #Function to solve for r double-dot (The length AB which is the spring)
x1 = x[0]
x2 = x[1]
y1 = y[0]
y2 = y[1]
z1 = z[0]
z2 = z[1]
Fs = -k*(z1-l0)
z1dot = z2
z2dot = g*cos(y1) - Fs/m + (y2**2)*z1 + x2*OA*cos(y1-x1) - (Fs*(sin(y1-x1))**2)/m + g*sin(x1)*sin(y1-x1)
return [z1dot,z2dot]
# Define initial conditions, etc
d2r = pi/180
x0 = [30*d2r, 0] # start from 30 deg, with zero velocity
y0 = [60*d2r, 0] # start from 60 deg, with zero velocity
z0 = [1, 0] #Start from r=1
t0 = 0
tf = 10
#Integrate dynamics, initial value problem
sol1 = solve_ivp(pendulumDynamics1,[t0,tf],x0,dense_output=True) # Save as a continuous solution
sol2 = solve_ivp(pendulumDynamics2,[t0,tf],y0,dense_output=True) # Save as a continuous solution
sol3 = solve_ivp(pendulumDynamics3,[t0,tf],z0,dense_output=True) # Save as a continuous solution
t = linspace(t0,tf,200) # determine solution at these times
dt = t[1]-t[0]
x = sol1.sol(t)
y = sol2.sol(t)
z = sol3.sol(t)
I have 3 functions in my code, each to solve for x, y, and z. I then use solve_ivp function to solve for x, and y, and z. The error in the code is:
`File "C:\Users\omora\OneDrive\Dokument\AERO 211\project.py", line 13, in pendulumDynamics1 y1 = y[0]
NameError: name 'y' is not defined`
I don't understand why it is saying that y is not defined, because I defined it in my functions.