(1) SCIPY
Code
"""
References:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
https://github.com/DTUWindEnergy/PyWake
"""
import time
from py_wake.examples.data.hornsrev1 import V80
from py_wake.examples.data.hornsrev1 import Hornsrev1Site # We work with the Horns Rev 1 site, which comes already set up with PyWake.
from py_wake import BastankhahGaussian
from scipy.optimize import minimize
import numpy as np
def funC(x, y, c):
"""
Turns on/off the use of wind turbine depending on the value of c.
scipy generates c real values in the range [0, 1] as specified by the bounds including 0.2 etc.
If c is 0.5 or more turbine will be used otherwise turbine will not be used.
"""
x_selected = x[c >= 0.5]
y_selected = y[c >= 0.5]
return (x_selected, y_selected)
def wt_simulation(c):
"""
This is our objective function. It will return the aep=annual energy production in GWh.
We will maximize aep.
"""
site = Hornsrev1Site()
x, y = site.initial_position.T
windTurbines = V80()
wf_model = BastankhahGaussian(site, windTurbines)
x_new, y_new = funC(x, y, c)
# run wind farm simulation
sim_res = wf_model(
x_new, y_new, # wind turbine positions
h=None, # wind turbine heights (defaults to the heights defined in windTurbines)
type=0, # Wind turbine types
wd=None, # Wind direction (defaults to site.default_wd (0,1,...,360 if not overriden))
ws=None, # Wind speed (defaults to site.default_ws (3,4,...,25m/s if not overriden))
)
aep_output = sim_res.aep().sum() # we maximize aep
return -float(aep_output) # negate because of scipy minimize
def solve():
t0 = time.perf_counter()
wt = 80 # for V80
x0 = np.ones(wt) # initial value
bounds = [(0, 1) for _ in range(wt)]
res = minimize(wt_simulation, x0=x0, bounds=bounds)
print(f'success status: {res.success}')
print(f'aep: {-res.fun}') # negate to get the true maximum aep
print(f'c values: {res.x}\n')
print(f'elapse: {round(time.perf_counter() - t0)}s')
# start
solve()
Output
success status: True
aep: 682.0407252944838
c values: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. 1. 1. 1.]
elapse: 274s
(2) OPTUNA
This is using optuna framework considering c
as hyperparameter that we are going to optimize to achieve maximum aep (annual energy production). I am using SkoptSampler here from scikit-optimize. Optuna has some samplers that we can use. This will enforce that what scipy saw is also seen by other optimizer.
Code
"""
Additional modules
pip install optuna
pip install scikit-optimize
"""
import time
from py_wake.examples.data.hornsrev1 import V80
from py_wake.examples.data.hornsrev1 import Hornsrev1Site # We work with the Horns Rev 1 site, which comes already set up with PyWake.
from py_wake import BastankhahGaussian
import numpy as np
import optuna
def funC(x, y, c):
"""
Turns on/off the use of wind turbine depending on the value of c.
optuna generates c integer values in the range [0, 1] as specified by the bounds.
If c is 1 turbine will be run otherwise turbine will not be run.
"""
c = np.array(c)
x_selected = x[c == 1]
y_selected = y[c == 1]
return (x_selected, y_selected)
def objective(trial):
"""
This is our objective function. It will return the aep=annual energy production in GWh.
We will maximize aep.
"""
site = Hornsrev1Site()
x, y = site.initial_position.T
windTurbines = V80()
wt = 80 # for v80
# We ask values of c from optuna.
c = []
for i in range(wt):
varname = f'c{i}'
minv, maxv, stepv = 0, 1, 1
c.append(trial.suggest_int(varname, minv, maxv, step=stepv))
wf_model = BastankhahGaussian(site, windTurbines)
x_new, y_new = funC(x, y, c)
# run wind farm simulation
sim_res = wf_model(
x_new, y_new, # wind turbine positions
h=None, # wind turbine heights (defaults to the heights defined in windTurbines)
type=0, # Wind turbine types
wd=None, # Wind direction (defaults to site.default_wd (0,1,...,360 if not overriden))
ws=None, # Wind speed (defaults to site.default_ws (3,4,...,25m/s if not overriden))
)
aep_output = sim_res.aep().sum()
return float(aep_output) # give feedback to optuna of how the c we asks has performed
def optuna_hpo():
t0 = time.perf_counter()
num_trials = 300
sampler = optuna.integration.SkoptSampler()
study = optuna.create_study(sampler=sampler, direction="maximize")
study.optimize(objective, n_trials=num_trials)
print(f"Best params: {study.best_params}")
print(f"Best value: {study.best_value}\n")
print(f'elapse: {round(time.perf_counter() - t0)}s')
# start
optuna_hpo()
Output
...
[I 2021-12-03 16:48:07,935] Trial 299 finished with value: 379.6195135529371 and parameters: {'c0': 0, 'c1': 0, 'c2': 1, 'c3': 1, 'c4': 1, 'c5': 0, 'c6': 1, 'c7': 0, 'c8': 1, 'c9': 0, 'c10': 0, 'c11': 1, 'c12': 0, 'c13': 0, 'c14': 1, 'c15': 0, 'c16': 1, 'c17': 0, 'c18': 1, 'c19': 0, 'c20': 1, 'c21': 0, 'c22': 0, 'c23': 1, 'c24': 1, 'c25': 1, 'c26': 1, 'c27': 1, 'c28': 0, 'c29': 0, 'c30': 0, 'c31': 0, 'c32': 0, 'c33': 1, 'c34': 0, 'c35': 0, 'c36': 1, 'c37': 1, 'c38': 1, 'c39': 0, 'c40': 0, 'c41': 1, 'c42': 0, 'c43': 0, 'c44': 1, 'c45': 1, 'c46': 1, 'c47': 0, 'c48': 0, 'c49': 1, 'c50': 0, 'c51': 1, 'c52': 0, 'c53': 1, 'c54': 1, 'c55': 1, 'c56': 0, 'c57': 1, 'c58': 1, 'c59': 1, 'c60': 1, 'c61': 1, 'c62': 1, 'c63': 0, 'c64': 0, 'c65': 1, 'c66': 0, 'c67': 0, 'c68': 0, 'c69': 1, 'c70': 1, 'c71': 0, 'c72': 1, 'c73': 1, 'c74': 0, 'c75': 1, 'c76': 0, 'c77': 1, 'c78': 1, 'c79': 1}. Best is trial 110 with value: 682.0407252944838.
Best params: {'c0': 1, 'c1': 1, 'c2': 1, 'c3': 1, 'c4': 1, 'c5': 1, 'c6': 1, 'c7': 1, 'c8': 1, 'c9': 1, 'c10': 1, 'c11': 1, 'c12': 1, 'c13': 1, 'c14': 1, 'c15': 1, 'c16': 1, 'c17': 1, 'c18': 1, 'c19': 1, 'c20': 1, 'c21': 1, 'c22': 1, 'c23': 1, 'c24': 1, 'c25': 1, 'c26': 1, 'c27': 1, 'c28': 1, 'c29': 1, 'c30': 1, 'c31': 1, 'c32': 1, 'c33': 1, 'c34': 1, 'c35': 1, 'c36': 1, 'c37': 1, 'c38': 1, 'c39': 1, 'c40': 1, 'c41': 1, 'c42': 1, 'c43': 1, 'c44': 1, 'c45': 1, 'c46': 1, 'c47': 1, 'c48': 1, 'c49': 1, 'c50': 1, 'c51': 1, 'c52': 1, 'c53': 1, 'c54': 1, 'c55': 1, 'c56': 1, 'c57': 1, 'c58': 1, 'c59': 1, 'c60': 1, 'c61': 1, 'c62': 1, 'c63': 1, 'c64': 1, 'c65': 1, 'c66': 1, 'c67': 1, 'c68': 1, 'c69': 1, 'c70': 1, 'c71': 1, 'c72': 1, 'c73': 1, 'c74': 1, 'c75': 1, 'c76': 1, 'c77': 1, 'c78': 1, 'c79': 1}
Best value: 682.0407252944838
elapse: 4533s
It found the maximum aep of 682.0407252944838 as early as trial 110 out of 300 trials.
300 trials are completed after 4533s or 1.25hr. The best parameters are all 1 meaning all turbines must run to get maximum aep.