1

While I'm certain this must have been tried before, I cant seem to find any examples of this concept being done myself.

What I'm describing goes off of the idea that effectively you could model all "things" which are as objects. From their you can make objects which use other objects. An example would be starting at the fundamental particles in physics combine them to get certain particles like protons neutrons and electrons - then atoms - work your way up to the rest of chemistry etc....

Has this been attempted before and is it possible? How would I even go about it?

1 Answers1

0

If what you mean by "the Universe," is the entire actual universe, the answer to "Is it possible?" is a resounding "Hell no!!!"

Consider a single mole of H2O, good old water. By definition a mole contains ~6*1023 atoms, and knowing the atomic weights involved yields the mass. The density of water is well known. Pulling all the pieces together, we end up with 1 mole is about 18 mL of water. To put that in perspective, the cough syrup dose cup in my medicine cabinet is 20mL. If you could represent the state of each atom using a single byte—I doubt it!—you'd require 1011 terabytes of storage just to represent a snapshot of that mass, and you'd need to update that volume of data every delta-t for the duration you wish to simulate. Additionally, the number of 2-way interactions between N entities grows as O(N2), i.e., on the order of 1046 calculations would be involved, again at every delta-t. To put that into perspective, if you had access to the world's fastest current distributed computer with exaflop capability, it would take you O(1028) seconds (on the order of 1020 years) to perform the calculations for a single simulated delta-t update! You might be able to improve that by playing games with locality, but given the speed of light and the small distances involved you'd have to make a convincing case that heat transfer via thermal radiation couldn't cause state-altering interactions between any pair of atoms within the volume. To sum it up, the storage and calculation requirements are both infeasible for as little as a single mole of mass.

I know from a conversation at a conference a couple of years ago that there are some advanced physics labs that have worked on this approach to get an idea of what happens with a few thousand atoms. However, I can't give specific references since I haven't seen the papers and only heard about it over a beer.

pjs
  • 18,696
  • 4
  • 27
  • 56