I am trying to do my own object detection using my own dataset. I started my first machine learning program from google tensorflow object detection api, the link is here:eager_few_shot_od_training_tf2_colab.ipynb
In the colab tutorial, the author use javascript label the images, the result like this:
gt_boxes = [
np.array([[0.436, 0.591, 0.629, 0.712]], dtype=np.float32),
np.array([[0.539, 0.583, 0.73, 0.71]], dtype=np.float32),
np.array([[0.464, 0.414, 0.626, 0.548]], dtype=np.float32),
np.array([[0.313, 0.308, 0.648, 0.526]], dtype=np.float32),
np.array([[0.256, 0.444, 0.484, 0.629]], dtype=np.float32)
]
When I run my own program, I use labelimg replace to javascript, but the dataset is not compatible.
Now I have two questions, the first one is what is the dataset type in colab tutorial? coco, yolo, voc, or any other? the second is how transform dataset between labelimg data and colab tutorial data? My target is using labelimg to label data then substitute in colab tutorial.