I am combining dtplyr
and multidplyr
libraries to handle some basic mutate/summarise operations carried out on a very large db.
final_db_partition, after merging is sometimes 30m lines long.
I cannot figure out if I am doing something wrong but the R session is aborted or I finish my memory.
R version 4.0.5 (2021-03-31) / Platform: x86_64-apple-darwin17.0 (64-bit) / Running under: macOS Big Sur 10.16
How should I tackle this issue?
library(multidplyr)
library(dtplyr)
library(dplyr, warn.conflicts = FALSE)
library(data.table)
library(stringr)
default_cluster(parallel::detectCores()-1)
cluster_library(default_cluster(), 'dplyr')
cluster_library(default_cluster(), 'stringr')
db1 <- db1 %>%
data.table::data.table() %>%
lazy_dt(immutable = FALSE)
db2 <- db2 %>%
data.table::data.table() %>%
lazy_dt(immutable = FALSE)
final_db_partition <- db1 %>%
left_join(db2) %>%
as.data.frame() %>%
group_by(id) %>%
partition(cluster = default_cluster())
final_db <- final_db_partition %>%
as.data.table() %>%
#lazy_dt(immutable = FALSE) %>%
mutate(m1=ifelse(stringi::stri_detect_regex(m_destination, paste0("\\b", m_origin,"\\b")),1,0)) %>%
as.data.frame() %>%
group_by(across(c(-v1,-v2,-v3))) %>%
summarise(finalv1 = sum(finalv1,na.rm=T),
finalv2 = sum(finalv2,na.rm=T)) %>%
collect()