0

I am building a variant of the maximum coverage location model and want to limit the amount of points that each "facility" can cover. I am using Gurobi optimization . I have tried using the AddConstr() function but have failed. Each K represents a facility and r a radius. My goal is to add a constraint that would limit the amount of points inside that radius. points is a 2D array of x-y coordinates. K is the inputted number of facilities, and M is the total number of points. Would I be able to accomplish this inside this function or would I need to add another variable?

import numpy as np
from scipy.spatial import distance_matrix
from gurobipy import *
from scipy.spatial import ConvexHull
from shapely.geometry import Polygon, Point
from numpy import random

def generate_candidate_sites(points,M=100):
    hull = ConvexHull(points)
    polygon_points = points[hull.vertices]
    poly = Polygon(polygon_points)
    min_x, min_y, max_x, max_y = poly.bounds
    sites = []
    while len(sites) < M:
        random_point = Point([random.uniform(min_x, max_x),
                             random.uniform(min_y, max_y)])
        if (random_point.within(poly)):
            sites.append(random_point)
    return np.array([(p.x,p.y) for p in sites])

def mclp(points,K,radius,M):
    print('----- Configurations -----')
    print('  Number of points %g' % points.shape[0])
    print('  K %g' % K)
    print('  Radius %g' % radius)
    print('  M %g' % M)
    import time
    start = time.time()
    sites = generate_candidate_sites(points,M)
    J = sites.shape[0]
    I = points.shape[0]
    D = distance_matrix(points,sites)
    mask1 = D<=radius
    D[mask1]=1
    D[~mask1]=0
    # Build model
    m = Model()
    # Add variables
    x = {}
    y = {}
    for i in range(I):
      y[i] = m.addVar(vtype=GRB.BINARY, name="y%d" % i)
    for j in range(J):
      x[j] = m.addVar(vtype=GRB.BINARY, name="x%d" % j)

    m.update()
    # Add constraints
    m.addConstr(quicksum(x[j] for j in range(J)) == K)

    for i in range(I):
        m.addConstr(quicksum(x[j] for j in np.where(D[i]==1)[0]) >= y[i])

    m.setObjective(quicksum(y[i]for i in range(I)),GRB.MAXIMIZE)
    m.setParam('OutputFlag', 0)
    m.optimize()
    end = time.time()
    print('----- Output -----')
    print('  Running time : %s seconds' % float(end-start))
    print('  Optimal coverage points: %g' % m.objVal)
    
    solution = []
    if m.status == GRB.Status.OPTIMAL:
        for v in m.getVars():
            # print v.varName,v.x
            if v.x==1 and v.varName[0]=="x":
               solution.append(int(v.varName[1:]))
    opt_sites = sites[solution]
    return opt_sites,m.objVal

def plot_input(points):
    from matplotlib import pyplot as plt
    fig = plt.figure(figsize=(8,8))
    plt.scatter(points[:,0],points[:,1],c='C0')
    ax = plt.gca()
    ax.axis('equal')
    ax.tick_params(axis='both',left=False, top=False, right=False,
                       bottom=False, labelleft=False, labeltop=False,
                       labelright=False, labelbottom=False)

def plot_result(points,opt_sites,radius):
    from matplotlib import pyplot as plt
    fig = plt.figure(figsize=(8,8))
    plt.scatter(points[:,0],points[:,1],c='C0')
    ax = plt.gca()
    plt.scatter(opt_sites[:,0],opt_sites[:,1],c='C1',marker='+')
    for site in opt_sites:
        circle = plt.Circle(site, radius, color='C1',fill=False,lw=2)
        ax.add_artist(circle)
    ax.axis('equal')
    ax.tick_params(axis='both',left=False, top=False, right=False,
                       bottom=False, labelleft=False, labeltop=False,
                       labelright=False, labelbottom=False)

Run a small sample program

import numpy as np
Npoints = 300
from sklearn.datasets import make_moons
points,_ = make_moons(Npoints,noise=0.15)
K = 20
radius = 0.2
M = 100
opt_sites,f = mclp(points,K,radius,M)
plot_result(points,opt_sites,radius)
izc2300
  • 1
  • 1

0 Answers0