I was going through Linear and Logistic regression from ISLR and in both cases I found that one of the approaches adopted to increase the flexibility of the model was to use polynomial features - X and X^2 both as features and then apply the regression models as usual while considering X and X^2 as independent features (in sklearn, not the polynomial fit of statsmodel). Does that not increase the collinearity amongst the features though? How does it affect the model performance?
To summarize my thoughts regarding this -
First, X and X^2 have substantial correlation no doubt.
Second, I wrote a blog demonstrating that, at least in Linear regression, collinearity amongst features does not affect the model fit score though it makes the model less interpretable by increasing coefficient uncertainty.
So does the second point have anything to do with this, given that model performance is measured by the fit score.