We just merged in support for the tidy()
method for parsnip models fitted with the LiblineaR engine, so if you install from GitHub, you should be able to have this feature now:
devtools::install_github("tidymodels/parsnip")
Here is a demo of how it works:
library(tidymodels)
#> Registered S3 method overwritten by 'tune':
#> method from
#> required_pkgs.model_spec parsnip
data(two_class_dat, package = "modeldata")
example_split <- initial_split(two_class_dat, prop = 0.99)
example_train <- training(example_split)
example_test <- testing(example_split)
rec <- recipe(Class ~ ., data = example_train) %>%
step_normalize(all_numeric_predictors())
spec1 <- svm_linear() %>%
set_engine("LiblineaR") %>%
set_mode("classification")
spec2 <- logistic_reg(penalty = 0.1, mixture = 1) %>%
set_engine("LiblineaR") %>%
set_mode("classification")
wf <- workflow() %>%
add_recipe(rec)
wf %>%
add_model(spec1) %>%
fit(example_train) %>%
tidy()
#> # A tibble: 3 x 2
#> term estimate
#> <chr> <dbl>
#> 1 A 0.361
#> 2 B -0.966
#> 3 Bias 0.113
wf %>%
add_model(spec2) %>%
fit(example_train) %>%
tidy()
#> # A tibble: 3 x 2
#> term estimate
#> <chr> <dbl>
#> 1 A 1.06
#> 2 B -2.76
#> 3 Bias 0.329
svm_linear() %>%
set_engine("LiblineaR") %>%
set_mode("regression") %>%
fit(mpg ~ ., data = mtcars) %>%
tidy()
#> # A tibble: 11 x 2
#> term estimate
#> <chr> <dbl>
#> 1 cyl 0.141
#> 2 disp -0.0380
#> 3 hp 0.0415
#> 4 drat 0.226
#> 5 wt 0.0757
#> 6 qsec 1.06
#> 7 vs 0.0648
#> 8 am 0.0479
#> 9 gear 0.219
#> 10 carb 0.00861
#> 11 Bias 0.0525
Created on 2021-04-22 by the reprex package (v2.0.0)