I am looking at this error. I am making a part of the model untrainable, I get an error in the .fit. would like to freeze the start of the model to only trade the head. top is the model, bottom is the .fit
def snakeEyes():
K = 100
i = tf.keras.layers.Input(shape=(7,11,17), name="matrix")
x1 = tf.keras.layers.Conv2D(K, 2,activation="relu",padding ="same")(i)
x1 = tf.keras.layers.Conv2D(K, 2,activation="relu")(x1)
x1 = tf.keras.layers.MaxPooling2D ()(x1)
x1 = tf.keras.layers.Conv2D(K, 2,activation="relu",padding ="same")(x1)
x1 = tf.keras.layers.Conv2D(K, 2,activation="relu")(x1)
x1 = tf.keras.layers.MaxPooling2D ()(x1)
x1 = tf.keras.layers.Flatten()(x1)
x2 = tf.keras.layers.Conv2D(K, 3,activation="relu",padding ="same")(i)
x2 = tf.keras.layers.Conv2D(K, 3,activation="relu",padding ="same")(x2)
x2 = tf.keras.layers.MaxPooling2D ()(x2)
x2 = tf.keras.layers.Conv2D(K, 3,activation="relu",padding ="same")(x2)
x2 = tf.keras.layers.Conv2D(K, 3,activation="relu",padding ="same")(x2)
x2 = tf.keras.layers.MaxPooling2D ()(x2)
x2 = tf.keras.layers.Flatten()(x2)
x = tf.keras.layers.concatenate([x1,x2])
x = tf.keras.layers.Dense(30,activation="relu")(x)
logits = tf.keras.layers.Dense(4)(x)
logits = tf.keras.layers.Softmax()(logits)
values = tf.keras.layers.Dense(64, activation='relu', name="out1")(x)
values = tf.keras.layers.Dense(1, activation="linear")(values)
actor = Model(inputs=i, outputs=logits)
actor.compile()
critic = Model(inputs=i, outputs=values)
critic.compile()
policy = Model(inputs=i, outputs=[logits,values])
policy.compile()
return actor,critic,policy
then in a loop :
for layer in agent1.critic.layers:layer.trainable = True
for layer in agent1.actor.layers:layer.trainable = False
agent1.critic.fit(state_matrices,rewards)
episode_reward = tf.math.reduce_sum(rewards)
return episode_reward , size
I get:
ValueError: No gradients provided for any variable: ['conv2d_104/kernel:0', 'conv2d_104/bias:0', ..