-1

I downloaded celebA dataset and extracted it to my harddrive. it's in a folder structure like below.

 dataset_directory
         +- celeba
            +- img_align_celeba
               +- 000001.jpg
               +- 000002.jpg
               +- 000003.jpg
               +- ...

I also have the annotation files both in txt and CSV format

What's the best way to load this as a dataset? The only way I have done before was loading from TensorFlow using something like the code below but this will not work there in this case

(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()

I am hoping to build a model using the function below

(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()

x_train = x_train.reshape(-1,28,28,1)
x_test = x_test.reshape(-1,28,28,1)

def build_model(hp):   #random search passes this hyperparameter() object
    model = keras.models.Sequential()
    
    
    #model.add(Conv2D(32, (3, 3), input_shape=x_train.shape[1:]))
    model.add(Conv2D(hp.Int("input_units", min_value=32, max_value=256, step=32), (3,3), input_shape = x_train.shape[1:]))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    
    
    for i in range(hp.Int("n_layers",min_value = 1, max_value = 4, step=1)):
        #model.add(Conv2D(32, (3, 3)))                
        model.add(Conv2D(hp.Int(f"conv_{i}_units", min_value=32, max_value=256, step=32), (3,3)))
        model.add(Activation('relu'))
        #model.add(MaxPooling2D(pool_size=(2, 2)))
    
    model.add(Flatten())  # this converts our 3D feature maps to 1D feature vectors
    
    model.add(Dense(10))
    model.add(Activation("softmax"))
    
    model.compile(optimizer="adam",
                  loss="sparse_categorical_crossentropy",
                  metrics=["accuracy"])
    return model

I would appreciate any help

Jean Camargo
  • 340
  • 3
  • 17

1 Answers1

0

duplicate of this

You need the data extracted in the layout specified in the question and annotations in the same path

Jean Camargo
  • 340
  • 3
  • 17