Hallo this is my first question in stackoverflow or any simliar forum, so please excuse and be kind if I missed something out ;)
I am using the vegan package in R to calculate a cca analysis. Because my study is about intraspecific variation of species traits, I do not have a "plot X species- matrix" but an "individuum X trait- matrix" representing a "physio-chemcial-niche" (so my species scores look different than they used to). So my questions are:
- is it appropiate to do this analysis in this way?
- Is it possible to interpret the CCA axis based on the "species scores" (which are not species scores in my case) - I would like to have informations like: CCA1 is most related to trait X.
- How can I interpret the length of the biplot arrows in comparison to premutaion test (anova.cca) - Because I get many "long" arrows but looking at the permutation test only few of them are significant?
Here is my summary(cca)-Output:
Call:
cca(formula = mniche_g ~ cover_total * Richness + altitude + Eastness + lan_TEMP + lan_REACT + lan_NUTRI + lan_MOIST + Condition(glacier/transect/plot/individuum), data = mres_g_sc)
Partitioning of scaled Chi-square:
Inertia Proportion
Total 0.031551 1.00000
Conditioned 0.001716 0.05439
Constrained 0.006907 0.21890
Unconstrained 0.022928 0.72670
Eigenvalues, and their contribution to the scaled Chi-square
after removing the contribution of conditiniong variables
Importance of components:
CCA1 CCA2 CCA3 CA1 CA2 CA3
Eigenvalue 0.00605 0.0005713 0.0002848 0.0167 0.00382 0.002413
Proportion Explained 0.20280 0.0191480 0.0095474 0.5596 0.12805 0.080863
Cumulative Proportion 0.20280 0.2219458 0.2314932 0.7911 0.91914 1.000000
Accumulated constrained eigenvalues
Importance of components:
CCA1 CCA2 CCA3
Eigenvalue 0.00605 0.0005713 0.0002848
Proportion Explained 0.87604 0.0827150 0.0412425
Cumulative Proportion 0.87604 0.9587575 1.0000000
Scaling 2 for species and site scores
* Species are scaled proportional to eigenvalues
* Sites are unscaled: weighted dispersion equal on all dimensions
Species scores
CCA1 CCA2 CCA3 CA1 CA2 CA3
SLA_range_ind 0.43964 -0.002623 -0.0286814 -0.75599 -0.04823 0.003317
SLA_mean_ind 0.01771 -0.042969 0.0246679 -0.01180 0.12732 0.053094
LNC -0.10613 -0.064207 -0.0637272 0.07261 -0.15962 0.198612
LCC -0.01375 0.012131 -0.0005462 0.02573 -0.01539 -0.021314
...
Here is my anova.cca(cca)-Output:
Permutation test for cca under reduced model
Terms added sequentially (first to last)
Permutation: free
Number of permutations: 999
Model: cca(formula = mniche_g ~ cover_total * Richness + altitude + Eastness + lan_TEMP + lan_REACT + lan_NUTRI + lan_MOIST + Condition(glacier/transect/plot/individuum), data = mres_g_sc)
Df ChiSquare F Pr(>F)
cover_total 1 0.0023710 10.4442 0.002 **
Richness 1 0.0006053 2.6663 0.080 .
altitude 1 0.0022628 9.9676 0.001 ***
Eastness 1 0.0005370 2.3657 0.083 .
lan_TEMP 1 0.0001702 0.7497 0.450
lan_REACT 1 0.0005519 2.4313 0.094 .
lan_NUTRI 1 0.0000883 0.3889 0.683
lan_MOIST 1 0.0001017 0.4479 0.633
cover_total:Richness 1 0.0002184 0.9620 0.351
Residual 101 0.0229283
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
and here the biplot: enter image description here
Thank you all!