I have a dataset with 61 columns (60 explanatory variables and 1 response variable).
All the explantory variables all numerical, and the response is categorical (Default).Some of the ex. variables have negative values (financial data), and therefore it seems more sensible to standardize rather than normalize. However, when standardizing using the "apply" function, I have to remove the response variable first, so I do:
model <- read.table......
modelwithnoresponse <- model
modelwithnoresponse$Default <- NULL
means <- apply(modelwithnoresponse,2mean)
standarddeviations <- apply(modelwithnoresponse,2,sd)
modelSTAN <- scale(modelwithnoresponse,center=means,scale=standarddeviations)
So far so good, the data is standardized. However, now I would like to add the response variable back to the "modelSTAN". I've seen some posts on dplyr, merge-functions and rbind, but I couldnt quite get to work so that response would simply be added back as the last column to my "modelSTAN".
Does anyone have a good solution to this, or maybe another workaround to standardize it without removing the response variable first?
I'm quite new to R, as I'm a finance student and took R as an elective..