my code is naive bayes classifier and I want count positive & negative sentences
pos_count=0
neg_count=0
file = open("a-samples.txt","r")
for line in file:
custom_tokens = remove_noise(word_tokenize(line))
print('\n',line,'\n',classifier.classify(dict([token, True] for token in custom_tokens)))
if (classifier.classify(dict([token, True] for token in custom_tokens) = "Positive"
pos_count=pos_count+1
elif (classifier.classify(dict([token, True] for token in custom_tokens)="Negative"
neg_count=neg_count+1
print ("pos =",pos_count,'\n',"neg= ",neg_count)