There is Attiny85, with an internal clock source at 8 MHz.
I am trying to implement a microsecond timer based on the hardware timer timer0.
What is my logic: Since the clock frequency is 8 MHz and the prescaler is off, the time of one clock cycle will be about 0.1us (1/8000000). Initially, the timer overflows and causes interruptions when passing 0 ... 255, it takes more than 0.1us and is inconvenient for calculating 1μs.
To solve this, I thought about the option to change the initial value of the timer instead of 0 to 245. It turns out that in order to get to the interruption, you need to go through 10 clock cycles, which takes about 1us in time.
I load this code, but the Attiny LED obviously does not switch for about 5 seconds, although the code indicates 1 second (1000000us).
Code:
#include <avr/io.h>
#undef F_CPU
#define F_CPU 8000000UL
#include <avr/interrupt.h>
// Timer0 init
void timer0_Init() {
cli();
//SREG &= ~(1 << 7);
// Enable interrupt for timer0 overflow
TIMSK |= (1 << 1);
// Enabled timer0 (not prescaler) - CS02..CS00 = 001
TCCR0B = 0;
TCCR0B |= (1 << 0);
// Clear timer0 counter
TCNT0 = 245;
sei();
//SREG |= (1 << 7);
}
// timer0 overflow interrupt
// 1us interval logic:
// MCU frequency = 8mHz (8000000Hz), not prescaler
// 1 tick = 1/8000000 = 100ns = 0.1us, counter up++ after 1 tick (0.1us)
// 1us timer = 10 tick's => 245..255
static unsigned long microsecondsTimer;
ISR(TIMER0_OVF_vect) {
microsecondsTimer++;
TCNT0 = 245;
}
// Millis
/*unsigned long timerMillis() {
return microsecondsTimer / 1000;
}*/
void ledBlink() {
static unsigned long blinkTimer;
static int ledState;
// 10000us = 0.01s
// 1000000us = 1s
if(microsecondsTimer - blinkTimer >= 1000000) {
if(!ledState) {
PORTB |= (1 << 3); // HIGH
} else {
PORTB &= ~(1 << 3); // LOW
}
ledState = !ledState;
blinkTimer = microsecondsTimer;
}
}
int main(void)
{
// Set LED pin to OUTPUT mode
DDRB |= (1 << 3);
timer0_Init();
while (1)
{
ledBlink();
}
}
What could be the mistake? I have not yet learned how to work with fuses, so I initially loaded the fuses at 8 MHz through the Arduino IDE, and after that I already downloaded the main code (without changing the fuses) through AVRDUDE and Atmel Studio.
And another question, should I check the maximum value when updating my microsecond counter? I know that in Arduino, the micro and millis counters are reset when they reach the maximum value. For example, if I do not clear the TimerMicrosecond variables variable and it exceeds the size of the unsigned long, will it crash?