I have successfully ingested data from a MySQL RDS database to S3 buckets with a Lake Formation blueprint.
Upon inspecting the data, approximately 41/60 tables have been correctly ingested.
Bug searching has revealed two things:
- My blueprint workflow is not ingesting all tables because of this error in the blueprint/workflow:
An error occurred while calling o319.pyWriteDynamicFrame. Unknown type '245 in column 9 of 14 in binary-encoded result set.
- Missing tables are being created but with no data in it. From inspecting the JSON Table properties this is being performed by the initial crawl.
I have understood that this error from point 1 is glue recognising JSON as a column type with MySQL databases.
Has anyone had an issue like this before? I have no experience with editing AWS the JDBC driver on Glue as the documentation, as always, is poor.
Is there an obvious workaround I am missing?
Here is a screenshot of the workflow which is labelled as "importing failed"
Here is the JSON table properties of a table (successful_table) that has been successfully ingested:
{
"Name": "rds_DB_successful_table",
"DatabaseName": "rds-ingestion",
"CreateTime": "2020-06-23T14:07:04.000Z",
"UpdateTime": "2020-06-23T14:07:20.000Z",
"Retention": 0,
"StorageDescriptor": {
"Columns": [
{
"Name": "updated_at",
"Type": "timestamp"
},
{
"Name": "name",
"Type": "string"
},
{
"Name": "created_at",
"Type": "timestamp"
},
{
"Name": "id",
"Type": "int"
}
],
"Location": "s3://XXX-data-lake/DB/rds_DB_successful_tableversion_0/",
"InputFormat": "org.apache.hadoop.hive.ql.io.parquet.MapredParquetInputFormat",
"OutputFormat": "org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat",
"Compressed": false,
"NumberOfBuckets": 0,
"SerdeInfo": {
"SerializationLibrary": "org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe",
"Parameters": {
"serialization.format": "1"
}
},
"SortColumns": [],
"StoredAsSubDirectories": false
},
"TableType": "EXTERNAL_TABLE",
"Parameters": {
"CreatedByJob": "RDSCONNECTOR_etl_4_b968999a",
"CreatedByJobRun": "jr_37cc04c6fd928b9ff7a77fd50d6a98397a30c08ce3d56fae3fd618594585daea",
"LastTransformCompletedOn": "2020-06-23 14:07:20.508091",
"LastUpdatedByJob": "RDSCONNECTOR_etl_4_b968999a",
"LastUpdatedByJobRun": "jr_37cc04c6fd928b9ff7a77fd50d6a98397a30c08ce3d56fae3fd618594585daea",
"SourceConnection": "RDS Connection Type",
"SourceTableName": "DB_successful_table",
"SourceType": "JDBC",
"TableVersion": "0",
"TransformTime": "0:00:15.347357",
"classification": "PARQUET"
},
"IsRegisteredWithLakeFormation": true
}
Here is the JSON table properties of a table (bad_table) that has been unsuccessfully ingested but created:
{
"Name": "_rds_DB_bad_table",
"DatabaseName": "rds-ingestion",
"Owner": "owner",
"CreateTime": "2020-06-23T13:44:19.000Z",
"UpdateTime": "2020-06-23T13:44:19.000Z",
"LastAccessTime": "2020-06-23T13:44:19.000Z",
"Retention": 0,
"StorageDescriptor": {
"Columns": [
{
"Name": "office_id",
"Type": "int"
},
{
"Name": "updated_at",
"Type": "timestamp"
},
{
"Name": "created_at",
"Type": "timestamp"
},
{
"Name": "id",
"Type": "int"
},
{
"Name": "position",
"Type": "int"
},
{
"Name": "id",
"Type": "int"
},
{
"Name": "deadline",
"Type": "date"
}
],
"Location": "DB.bad_table",
"Compressed": false,
"NumberOfBuckets": -1,
"SerdeInfo": {
"Parameters": {}
},
"BucketColumns": [],
"SortColumns": [],
"Parameters": {
"CrawlerSchemaDeserializerVersion": "1.0",
"CrawlerSchemaSerializerVersion": "1.0",
"UPDATED_BY_CRAWLER": "RDSCONNECTOR_discoverer_57904714",
"classification": "mysql",
"compressionType": "none",
"connectionName": "RDS Connection Type",
"typeOfData": "table"
},
"StoredAsSubDirectories": false
},
"PartitionKeys": [],
"TableType": "EXTERNAL_TABLE",
"Parameters": {
"CrawlerSchemaDeserializerVersion": "1.0",
"CrawlerSchemaSerializerVersion": "1.0",
"UPDATED_BY_CRAWLER": "RDSCONNECTOR_discoverer_57904714",
"classification": "mysql",
"compressionType": "none",
"connectionName": "RDS Connection Type",
"typeOfData": "table"
},
"CreatedBy": "arn:aws:sts::724135113484:assumed-role/LakeFormationWorkflowRole/AWS-Crawler",
"IsRegisteredWithLakeFormation": false
}
Perhaps the comparison of these successful and unsuccessful JSON table properties hold the key.
Any help would be kindly appreciated!